
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009 1321

Optimization of Data-Flow Computations Using
Canonical TED Representation

Maciej Ciesielski, Senior Member, IEEE, Daniel Gomez-Prado, Student Member, IEEE,
Qian Ren, Member, IEEE, Jérémie Guillot, and

Emmanuel Boutillon, Member, IEEE

Abstract—An efficient graph-based method to optimize poly-
nomial expressions in data-flow computations is presented. The
method is based on the factorization, common-subexpression elim-
ination, and decomposition of algebraic expressions performed
on a canonical Taylor expansion diagram representation. It tar-
gets the minimization of the latency and hardware cost of arith-
metic operators in the scheduled implementation. The generated
data-flow graphs are better suited for high-level synthesis than
those extracted directly from the initial specification or obtained
with traditional algebraic decomposition methods. Experimental
results show that the resulting implementations are characterized
by better performance and smaller datapath area than those
obtained using traditional algebraic decomposition techniques.
The described method is generic, applicable to arbitrary algebraic
expressions, and does not require any knowledge of the application
domain.

Index Terms—Algebraic optimizations, common-subexpression
elimination (CSE), data-flow graphs (DFGs), high-level synthesis,
Taylor expansion diagrams (TEDs).

I. INTRODUCTION

MANY computations encountered in high-level design
specifications are represented as polynomial expres-

sions. They are used in computer graphics designs and digital
signal processing (DSP) applications, such as digital filters
and DSP transforms, where designs are specified as algorithms
written in C/C++. To deal with such abstract descriptions,
designers need efficient optimization tools to optimize the
initial specification code, prior to architectural (high-level) syn-
thesis. Unfortunately, conventional compilers do not provide
sufficient support for this task. Code optimization, such as
factorization, common-subexpression elimination (CSE), dead-
code elimination, etc., performed by compilers, is done only on
the syntactic and lexical levels and is not intended for arithmetic

Manuscript received October 8, 2008; revised February 18, 2009. Current
version published August 19, 2009. This paper was recommended by Associate
Editor R. Camposano.

M. Ciesielski is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Amherst, MA 01003 USA (e-mail: ciesiel@
ecs.umass.edu).

D. Gomez-Prado is with the VLSI CAD Laboratory, Department of Elec-
trical and Computer Engineering, University of Massachusetts, Amherst, MA
01003 USA.

Q. Ren is with Synopsys, Inc., Mountain View, CA 94043 USA.
J. Guillot is with the Laboratoire d’Informatique de Robotique et de

Microélectronique de Montpellier, 34392 Montpellier, France.
E. Boutillon is with the Laboratoire des Sciences et Techniques de

l’Information de la Communication et de la Connaissance, Université de
Bretagne Sud, BP 92116 Lorient, France.

Digital Object Identifier 10.1109/TCAD.2009.2024708

minimization. On the other hand, synthesis techniques, such
as scheduling, resource allocation, and binding, employed by
high-level synthesis tools, do not address front-end algorithmic
optimization [1]. These tools rely on a representation that is
derived by a direct translation of the original design specifi-
cation, leaving a possible modification of that specification to
the designer. As a result, the scope of the ensuing architectural
optimization is seriously reduced.

This paper introduces a systematic method to perform an
optimization of the initial design specification using a canonical
graph-based representation called Taylor expansion diagram
(TED) [2]. TEDs have already been applied to functional ver-
ification and algebraic optimization, such as factorization and
CSE, used in front-end synthesis and compilation. However,
their scope in this area has been limited to the simplification
of linear expressions, such as linear DSP transforms, without
considering final scheduled implementations [3], [4].

This paper describes how a canonical TED representation
can be extended to handle the optimization of arbitrary non-
linear polynomial expressions, using novel factorization and
decomposition algorithms. The goal is to generate an optimized
data-flow graph (DFG), better suited for high-level synthesis,
which will produce the best hardware implementation in terms
of its latency and hardware cost. The optimization involves
the minimization of the latency and of the hardware cost of
arithmetic operations in the final scheduled implementations
and not just the minimization of the number of arithmetic
operations, as done in all previous works. Expressions with
constant multiplications are replaced by shifters and adders to
further minimize the hardware cost. The proposed method have
been implemented in a software tool, called TDS (for TED-
based decomposition system), which is available online [5].

Experimental results show that the DFGs generated from the
optimized expressions have smaller latency than those obtained
using traditional algebraic techniques; they also require, on
average, less area than those provided by currently available
methods and tools.

The remainder of this paper is organized as follows.
Section II analyzes the state of the art in this field. Section III
reviews the TED fundamentals, including a method to represent
nonlinear polynomials as linear TEDs. Section IV describes
TED decomposition algorithms and introduces the concept of
normal factored form (NFF). The generation and optimization
of DFG is presented in Section V, along with the analysis of
optimization metrics. Section VI describes the generation of
DFGs with constant multiplications replaced by shifters and

0278-0070/$26.00 © 2009 IEEE

1322 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

adders. Section VII describes the overall TDS system. Finally,
Section VIII presents the major results, and Section IX offers
the conclusions and perspectives.

II. PREVIOUS WORK

Research in the optimization of the initial design specifica-
tions for hardware designs falls in several categories.

HDL Compilers: Several attempts have been made to pro-
vide optimizing transformations in high-level synthesis, hard-
ware description language (HDL) compilers [6]–[9], and logic
synthesis [10]. Behavioral transformations have been also used
in optimizing compilers [11]. These methods rely on the ap-
plication of basic algebraic properties, such as associativity,
commutativity, and distributivity, to manipulate the algebraic
expressions. In general, they do not offer a systematic way to
optimize the initial design specification or to derive optimum
DFGs for high-level synthesis. While several high-level synthe-
sis systems, such as Cyber [12], [13], Spark [14], or Catapult C
[15], [16], apply a host of code optimization methods (kernel-
based algebraic factorization, branch balancing, speculative
code motion, dead-code elimination, etc.), they do not rely
on any canonical representation that would guarantee even the
local optimality of the transformations.

Symbolic Algebra Methods: Polynomial models of high-
level design specifications have been used in the context of be-
havioral synthesis for the purpose of component mapping. The
approach presented in [17] (SymSyn software) uses symbolic
polynomial manipulation techniques to automate the mapping
of datapaths onto complex arithmetic blocks. The basic blocks
are converted to their polynomial representations and matched,
using symbolic algebra tools (Maple [18] or Mathematica [19]),
against predefined library elements, while minimizing the cost
of the components used. However, the decomposition is guided
by a selection of explicitly specified side relations, which
are polynomial expressions that describe the functionality of
the available library components. While this works well for
the mapping of a fixed data-flow computation onto a given
hardware library, it does not address the problem of modifying
the initial data-flow specification to obtain the best hardware
implementation.

Commercial symbolic algebra tools, such as Maple [18] and
Mathematica [19], use advanced symbolic algebra methods to
perform an efficient manipulation of mathematical expressions,
including fast multiplication, factorization, etc. However, de-
spite the unquestionable effectiveness of these methods for
classical mathematical applications, they are less effective in
the modeling of large-scale digital circuits and systems.

Domain-Specific Systems: Several systems have been devel-
oped for domain-specific applications, such as discrete signal
transforms. One such system, FFTW [20], targets code gener-
ation for DFT-based computation. The most advanced system
for DSP code generation, SPIRAL [21], generates an optimized
implementation of linear signal processing transforms, such
as discrete Fourier transform (DFT), discrete cosine transform
(DCT), discrete Hartley transform (DHT), etc. These signal
transforms are characterized by a highly structured form of the
transform, with known efficient factorizations such as radix-

2 decomposition. SPIRAL uses these properties to obtain so-
lutions in a concise form and applies dynamic programming
to find the best implementation. However, these systems are
domain specific, and their optimizations rely on the specific
knowledge of the transforms.

Kernel Based Decomposition: Algebraic methods have been
used in logic optimization to reduce the number of literals in
Boolean logic expressions [22]. These methods perform factor-
ization and CSE by applying techniques of kernel extraction
[23]. Kernel-based decomposition (KBD), originally employed
by logic synthesis, has been recently adopted to optimize
polynomial expressions of linear DSP transforms and nonlinear
filters [24]. While this method provides a systematic approach
to polynomial optimization, the polynomial representation used
in this paper is not canonical, which seriously reduces the scope
of optimization.

Cut-Based Decomposition: Askar et al. [3] proposed an
algebraic decomposition method using TED as an underlying
data structure. The method is based on applying a series of
additive and multiplicative cuts to the graph edges, such that
their removal separates the graph into disjoint subgraphs. Each
additive (multiplicative) cut introduces an addition (multiplica-
tion) in the resulting DFG. An admissible cut sequence that pro-
duces a DFG with a desired characteristic (minimum number of
resources or minimum latency) is sought. The disadvantage of
the cut-based method is that it is applicable only to TED graphs
with a disjoint decomposition property. Many TEDs, however,
such as those shown in Figs. 3 and 4, do not have a disjoint
decomposition property and, thus, cannot be decomposed using
this method.

In this paper, we show how TEDs can be extended to op-
timize nonlinear polynomials and how to efficiently generate
DFGs that are better suited for high-level synthesis.

III. POLYNOMIAL REPRESENTATION USING TED

A. TED Formalism

TED is a compact word-level graph-based data structure
that provides an efficient way to represent computation in
a canonical factored form [2]. It is particularly suitable for
computation-intensive applications, such as signal and image
processing, computer graphics, etc., with computations mod-
eled as polynomial expressions.

An algebraic multivariate expression f(x, y, . . .) can be rep-
resented using Taylor series expansion with respect to a variable
x around the origin x = 0 as follows:

f(x, y, . . .) = f(0, y, z, . . .) + xf ′(0, y, z, . . .)

+
1
2
x2f ′′(0, y, z, . . .) + . . . (1)

where f ′(x = 0), f ′′(x = 0), etc., are the successive derivatives
of f with respect to x evaluated at x = 0. For a large class
of expressions typically encountered in designs specified at a
high level, the expansion is finite. The individual terms of the
expression are then decomposed iteratively with respect to the
remaining variables (y, z, . . .) one variable at a time.

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1323

Fig. 1. TED representation for F = a2c + abc: (a) Original nonlinear TED.
(b) Linearized TED representing factored form F = a(a + b)c.

The resulting decomposition is stored as a directed acyclic
graph called TED. The TED nodes represent the individual
terms of the expansion, and each TED node is labeled with the
name of the decomposing variable. Each edge is labeled with
a pair (∧p,w), where ∧p represents the power of the variable
and w represents the edge weight. The resulting graph can
be reduced and normalized in much the same way as binary
decision diagrams (BDDs) [25] or binary moment diagrams
(BMDs) [26]. The reduced normalized TED is canonical for
a fixed order of variables. The expression encoded in the
graph is computed as a sum of expressions of all paths in the
graph, from the root to terminal 1. A detailed description of
this representation, including its construction, reduction, and
normalization, can be found in [2].

An example of a TED is shown in Fig. 1(a) for an expression
F = a2c + abc. The two terms of the expression, namely a2 · c
and a · b · c, can be traced as paths from the root to terminal 1
(ONE). The label (∧2, 1) on the edge from nodes a to c denotes
quadratic term a2 with weight = 1. The remaining edges are
linear, each labeled with (∧1, 1).

B. TED Linearization

It has been shown that the TED structure allows for efficient
factorization and decomposition of expressions modeled as
linear multivariate polynomials [3], [4]. For example, a TED
for expression F = ab + ac for variable order (a, b, c) natu-
rally represents the polynomial in its factored form a(b + c).
Unfortunately, this efficiency is missing when considering opti-
mizations involving nonlinear expressions. For example, in the
TED for function F = a2c + abc in Fig. 1(a), node a should be
factored out, resulting in a more compact form F = a(a + b)c,
but in its original form, the TED in Fig. 1(a) does not allow for
such a factorization.

Fortunately, TED can be readily transformed into a linear
form, which supports factorization. Conceptually, a linearized

Fig. 2. TED linearization: (a) Original TED containing node xn. (b) TED
after first linearization step. (c) Linearized TED.

TED represents an expression in which each variable xk, for
k > 1, is transformed into a product xk = x1 · x2, . . . , xk,
where xi = xj , ∀i, j.

Consider a nonlinear expression in (2). By replacing each
occurrence of xk by x1 · x2, . . . , xk, this expression can be
transformed into a linear form, shown in (3), known as Horner
form. A characteristic feature of this form is that it contains a
minimum number of multiplications [27] and, hence, is suitable
for implementations with a minimum amount of hardware
resources

F (x) = f0 + x · f1 + x2 · f2 · · · + xnfn (2)

= f0 + x1 (f1 + x2(·f2 · · · + xn · fn)) . (3)

By applying this rule, function F = a2c + abc can be viewed
as F = a1a2c + a1bc, which reduces to F = a1(a2 + b)c or,
equivalently, to F = a(a + b)c, as shown in Fig. 1(b).

TED linearization can be performed systematically by it-
eratively splitting the high-order TED nodes until each node
represents a variable in degree 1 and has two children: one
associated with a multiplicative (solid) edge and the other with
an additive (dotted) edge. This process is shown in Fig. 2. It
can be shown that the resulting linear TED is also canonical. In
the remainder of this paper, we only consider linear TEDs and
linearize the original expressions whenever necessary.

Although TED linearization has been known since the early
stages of TED development, it has been used for purposes other
than functional optimization. For example, a BTD [28] was
proposed as a means to improve the efficiency of the internal
TED data structure. Other noncanonical TED-like forms have
been used for the purpose of functional test generation for
register transfer level (RTL) designs [29].

It should be pointed out that, despite the apparent similarity
between linear TEDs and BDDs (or BMDs), the three represen-
tations are different. TED represents integer functions of integer
inputs, BDDs represent Boolean functions of Boolean inputs,
and BMDs are integer functions of binary inputs. In particular,
a TED for the expression ab + a reduces to a(b + 1), while a
BDD for ab + a reduces to a. A BMD for the same function
will be the same as TED only if the inputs a and b are single-bit
variables; otherwise, each input must be represented in terms of
its component bits.

1324 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

IV. TED DECOMPOSITION

This section reviews the basic concepts and algorithms of
TED-based factorization, CSE, and decomposition of polyno-
mial expressions, jointly referred to as TED decomposition.

A principal goal of algebraic factorization and decompo-
sition is to minimize the number of arithmetic operations
(additions and multiplications) in the expression. An example
of factorization is the transformation of the expression F =
ac + bc into a factored form F = (a + b)c, which reduces the
number of multiplications from two to one. If a subexpression
appears more than once in the expression, it can be extracted
and replaced by a new variable. This process is known as CSE
and results in a decomposed factored form of an expression.
The simplification of an expression (or multiple expressions)
by means of factorization and CSE is commonly referred to as
algebraic decomposition.

In this paper, we show how to perform algebraic decomposi-
tion directly on a TED graph, taking advantage of its compact
canonical representation. In fact, TED already encodes a given
expression in factored form. The goal of TED decomposition
is to find a factored form encoded in the TED that will pro-
duce a DFG with the minimum hardware cost of the final
scheduled implementation. This objective is different than a
straightforward minimization of the number of operations in the
unscheduled DFG, which has been the subject of all the known
previous works [3], [4], [24].

The TED decomposition method described here extends
the original work of Askar et al. [3] in that it is also based
on the TED data structure. However, it differs from the cut-
based decomposition in the way the algebraic operations are
identified in the TED and extracted from the graph to generate
the DFG. Instead of the top–down cut-based decomposition of
[3], the TED decomposition scheme presented here is applied
in a bottom–up fashion. Furthermore, it applies to arbitrary
TEDs (linearized if necessary), including those that do not
have a disjoint decomposition property. The method is based
on a series of functional transformations that decompose the
TED into a set of irreducible hierarchical TEDs from which a
final DFG representation is constructed. The decomposition is
guided by the quality of the resulting DFG and not just by the
number of operators.

TED decomposition is composed of the following basic
steps:

1) TED construction and linearization;
2) variable ordering;
3) sum- and product-term extraction;
4) recursive TED decomposition;
5) final decomposition of the top-level TED;
6) DFG construction and optimization.

The first step, which is the construction and linearization
of the TED, has already been described in Section III. The
remaining steps are described next. In the following, all the
procedures are applicable to linear TEDs, where each node
has at most two edges of different types, multiplicative and
additive.

A. Variable Ordering

The structure of the TED, and, hence, the resulting de-
composition, strongly depends on the variable order. In fact,
as shown in Section IV-E, the decomposition is uniquely
determined by the TED structure and the order of its vari-
ables. Hence, TED variable ordering plays a central role in
deriving decompositions that will lead to efficient hardware
implementations.

Several variable ordering algorithms have been developed,
including static ordering and dynamic reordering schemes [30],
[31], similar to those for BDDs. However, the significant dif-
ference between variable ordering for BDDs and for TEDs is
that ordering for linearized TEDs is driven by the complexity
of the resulting normal factored form (NFF) and the structure
of the resulting DFGs, rather than by the number of nodes in
the diagram.

B. Subgraph Extraction and Substitution

Before describing the actual decomposition algorithm, we
introduce the extraction and substitution operation, sub, which
forms the basis of most of the decomposition operations. It has
been implemented in the TDS system as the sub command.
Given an arbitrary subexpression expr of the expression en-
coded in the TED, the command sub var = expr extracts the
subexpression expr from the TED and substitutes it with a new
variable var.

The sub operation is implemented as follows [4]. First, the
variables in the expression expr are pushed to the bottom of
the TED, respecting the relative order of variables in expr. Let
the topmost variable in expr be v (i.e., if this expression were
represented by a separate TED, node v would be its topmost
node). Assuming that expr is contained in the original TED,
this expression will appear in the reordered TED as a subgraph
rooted at node v. (There may be other nodes with variable v, but
because of the canonicity of the TED, there will be only one
such subgraph, pointed to by at least one reference edge.) At
this point, the extraction of expr is accomplished by removing
the subgraph rooted at v and connecting the reference edge(s)
to terminal node 1. Depending on the overall decomposition
strategy (static, dynamic, etc.), the graph can be reordered again
to its original order, with the newly created variable var placed
directly above the original position of v (recall that variable v
may still be present in other parts of the graph).

The sub procedure can extract arbitrary subexpressions from
the graph, regardless of the position of its support variables in
the TED. Furthermore, if an internal portion of subexpression
expr is used by other portions of the TED, i.e., if any of the
internal subgraph nodes is referenced by the TED at nodes
different than its top node v, that portion of expr is automat-
ically duplicated before extraction and variable substitution.
Those operations are part of the standard TED manipulation
package. This case is shown in Fig. 3 for a TED of function
F = (a + b) · (c + d) + d. The sum term (c + d) is extracted
from the graph and replaced by a new variable S1, leaving
the subgraph rooted at node d (referenced by node b) in
the TED.

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1325

Fig. 3. Extraction of sum term with term duplication: (a) Original function
for F = (a + b) · (c + d) + d. (b) Extracting S1 = c + d with duplicated
node d.

C. Recursive TED Decomposition

TED decomposition is performed in a bottom–up manner, by
extracting simpler terms and replacing them with new variables
(nodes), followed by a similar decomposition of the resulting
higher level graph(s). The final result of the decomposition is a
series of irreducible TEDs related hierarchically.

The decomposition algorithms will be illustrated using the
following expression:

F = x · z · u + p · w · r + x · q · r + y · r. (4)

In its current form, this expression contains seven multipli-
cations and three additions. We will show how to simplify
this expression to obtain a DFG with fewer multiplication
operations and smallest latency by performing a decomposition
of its TED. Fig. 4(a) shows the TED for this expression for a
particular variable order.

Note that the TED in Fig. 4(a) cannot be decomposed
with the cut-based approach: It does not have additive cuts
that would separate the graph disjunctively into disjoint sub-
graphs; neither does it have a multiplicative cut (dominator
nodes) that would decompose it conjunctively into disjoint
subgraphs.

1) Product-Term Extraction: The extractable product term
is defined as a product of variables Πvi which appear in the
expression only once. Such an expression can be extracted from
the TED without duplicating any of its variables.

Extractable product terms can be identified in the TED as
a set of nodes connected by a series of multiplicative edges
only. By definition, the intermediate nodes in the set cannot
have any incident incoming or outgoing edges other than the

Fig. 4. TED decomposition for expression x · z · u + p · w · r + x · q · r +
y · r: (a) Original TED. (b) Simplified hierarchical TED after product-term
extraction, P1 = z · u and P2 = p · w. (c) Final hierarchical TED after sum-
term extraction, S1 = P2 + y, and its normal factored form F = x · (z · u +
q · r) + (p · w + y) · r.

multiplicative edges by which they are connected (i.e., they are
referred to only once). Only the starting and ending nodes in the
set can have incident additive edges or more than one incoming
or outgoing multiplicative edge; the ending node can also be the
terminal node 1.

The extractable product terms can be readily identified in the
TED by traversing the graph in a bottom–up fashion and creat-
ing a list of nodes connected by a simple series of multiplicative
edges. Starting with terminal node 1, the procedure examines
each node in the TED in a reverse variable order. For each node,
it traverses all its in-incident nodes in a depth-first fashion and
includes them in the product term if they satisfy the product

1326 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

term condition. In the TED in Fig. 4(a), the first node visited
from terminal 1 is node r. No product term can be constructed
with node r, since it has more than one incoming multiplicative
edge. The next in-incident node u has only one incident edge;
therefore, it produces an extractable product term z · u. The list
stops at z since it has two outgoing edges. Next, the procedure
examines the next node in order, which is node r, and its in-
incident edges. This search results in a product term p · w. No
other terms can be found in this graph. Note that the terms
y · r, w · r, or q · r are not extractable product terms, since their
extraction requires duplication of node r.

Each product term extracted from the TED (expression) is
replaced by a single node (new variable). The newly introduced
variable representing such a term is represented by a simple
TED. We refer to such a TED as irreducible TED, as it is
composed of a single product term that cannot be further
reduced.

The TED in Fig. 4(a) has two extractable product terms
z · u and p · w corresponding to new variables P1 and P2,
respectively. They are represented by irreducible TEDs P1 and
P2, as shown in Fig. 4(b). The left part of the figure shows a
reduced TED with the two nodes P1 and P2 referring to the
irreducible graphs.

2) Sum-Term Extraction: Similar to the extractable product
term, the sum term is defined as a sum of variables

∑
vi in the

expression. A sum term appears in the TED as a set of nodes
incident to multiplicative edges joined at a single common
node, such that the nodes in question are connected by a chain
of additive edges only.

If the graph does not have any sum terms, an application
of product-term extraction, described earlier, may expose addi-
tional sum terms. As an example, the original TED in Fig. 4(a)
does not have any sum terms, while the one obtained from
product-term extraction, shown in Fig. 4(b), contains the sum
term S1 = P2 + y.

The sum terms can be readily identified in the TED by
traversing the graph in a bottom–up fashion and creating, for
each node v, a list of nodes reachable from v by a multiplicative
edge and verifying if they are connected by a chain of additive
edges. The procedure starts at terminal node 1 and traverses
all the nodes in the graph in a reversed variable order. In the
example in Fig. 4(b), the set of nodes reachable from terminal
node 1 is {P1, r}. Since these nodes are not linked by an
additive edge, they do not form a sum term in the expression.
Node r is examined next. The list of nodes reachable from node
r by multiplicative edges is {q, y, P2}, with {P2, y} linked by
an additive edge. Hence, they form a sum term (P2 + y). Such
a term is substituted by a new variable S1 and represented as
an irreducible TED. No other sum term can be extracted from
the simplified TED. The resulting hierarchical TED is shown in
Fig. 4(c).

In the aforementioned example, the sum-term variables were
adjacent in the TED and directly connected by an additive
edge. The method actually works for an arbitrary variable
ordering, i.e., even if the sum-term nodes are separated by other
variables in the chain of additive edges. This case is shown
in Fig. 5(a) for expression F = a · m + b · n + c · m + d · n.
First, consider the sum-term variables {b, d} common to node

Fig. 5. TED for F = a · m + b · n + c · m + d · n: (a) Original TED.
(b) TED after extracting sum term (b + d). (c) TED after extracting sum term
(a + c).

n. These nodes are linked by a series of additive edges that
include variable c, not connected to n. Yet, the sum term (b + d)
can be readily extracted from the graph using the sub operation

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1327

described in Section IV-B. This is because of the associativity
property of addition

a · m + b · n + c · m + d · n = a · m + c · m + b · n + d · n.
(5)

The resulting TED is shown in Fig. 5(b), with S1 = (b + d)
extracted from the expression. Note the effect of this extraction
on the TED, which has been reordered.

The same procedure applies to the sum term (a + c) associ-
ated with node m, resulting in the final factorization

a · m + b · n + c · m + d · n = (a + c)m + (b + d)n (6)

as shown in Fig. 5(c).
This example illustrates the power of the extraction and

substitute procedure, which is capable of identifying such
terms without explicitly reordering the variables and implic-
itly applying the associativity property using simple graph
transformations.

3) Final Decomposition: The product-term and sum-term
extraction procedures are repeated iteratively until the top-
level TED is reduced to an irreducible form. At this point, the
top-level graph is decomposed using the fundamental Taylor
decomposition principle, described in Section III.

The graph is traversed in a topological order, starting at the
root node. At each visited node v, associated with variable x,
the expression F (v) is computed as

F (v) = x · F1(v) + F0(v) (7)

where F0(v) is the function rooted at the first node reachable
from v by an additive edge and F1(v) is the function rooted at
the first node reachable from v by a multiplicative edge.

To illustrate this process, consider the top-level TED shown
in the left part of Fig. 4(c). The following expression is derived
for this graph

F = x · (P1 + q · r) + S1 · r (8)

where P1 = z · u, P2 = p · w, and S1 = (P2 + y) are the irre-
ducible component TEDs obtained by the decomposition.

Such an expression is then transformed into a structural
representation, which is a DFG, where each algebraic opera-
tion (multiplication or addition) is represented as a hardware
operator (multiplier or adder). The relationship between the ex-
pression derived from the TED decomposition and the resulting
DFG is analyzed in Section IV-E.

D. Dynamic Factorization

An alternative approach to TED factorization has been pro-
posed in [4]. This method relies on the observation that a node
with multiple incoming (reference) edges represents a common
subexpression that can be extracted from several places in the
graph and substituted with a new variable (the sub routine,
described earlier, can be used for this purpose). In addition,
constants are represented as special TED nodes, rather than
as labels on the graph edges, and placed in the TED above
all variables. This makes it possible to factor out constants

as well as algebraic expressions. The TED variables are then
rotated down in order to find the best candidate subexpression
for extraction. Note that this procedure dynamically changes
the variable order and hence modifies the initial TED; this
is in contrast to static factorization methods that keep the
variable order unchanged (except for the local sub operation).
This approach may result in further minimization of operators.
Further details of this approach are provided in [4].

E. Normal Factored Form

The recursive TED decomposition procedure described in
the previous section produces a simplified algebraic expression
in factored form. By imposing additional rules regarding the
ordering of variables in the expression, such a form can be made
unique and minimal. We refer to such a form as normal factor
form (NFF).

Definition 1: The factored form expression associated with
a given TED is called an NFF for that TED if the order of
variables in the factored form expression is compatible with the
order of variables in the TED.

To illustrate the concept of NFF, consider again the TED
in Fig. 4(c) and the associated NFF, x · (P1 + q · r) + S1 · r,
resulting from the TED decomposition, given in (8). The vari-
ables in this equation do appear in the order compatible with the
top-level TED. In particular, the term x · (P1 + q · r) appears
first, since x is the top-level variable in the TED, followed by
S1 · r, which is placed lower in the graph. Similarly, the order
of variables in the term (P1 + q · r) is compatible with that in
the TED and so is the order of variables in each subexpression
P1, P2, and S1 associated with the corresponding irreducible
TED (which, in turn, is compatible with the original TED). In
general, the term with the highest variable in the TED is printed
first in the NFF.

One should note that there is a one-to-one mapping between
the arithmetic operations (+, ·) in NFF and the corresponding
edges in the decomposed TED. Specifically, each addition op-
eration corresponds to an additive edge, and each multiplication
corresponds to a multiplicative edge in an irreducible TED
obtained from TED decomposition. To illustrate this point, refer
to the set of irreducible TEDs in Fig. 4(c) and compare it
to the DFG generated from this decomposition, shown in Fig. 6.
The five multiplication operations in the DFG correspond to
the three nontrivial multiplicative edges in the top TED graph
(x · P1, q · r, and S1 · r) and two nontrivial multiplicative edges
in the subgraphs P1 = z · u and P2 = p · w. Similarly, there
are three additions corresponding to the three additive edges
in these graphs: two in the top-level TED F = x · (P1 + qr) +
S1r and one in the TED for S1 = P2 + y.

An important feature of the NFF is that it is unique for a
TED with a fixed variable order, as expressed by the following
theorem.

Theorem 1: The NFF derived from a linear TED is unique.
Proof: By construction, NFF is a recursively defined sum

of products or a product of sums of algebraic expressions. At
the lowest decomposition level, a product term (sum term) is a
product of variables Πvi (sum of variables

∑
vi), where each

variable vi appears only once and the variables are ordered

1328 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 6. DFG generated from the decomposed TED and the associated NFF:
F = x · (z · u + q · r) + (p · w + y) · r shown in Fig. 4(c).

according to their order in the original TED. Hence, the expres-
sion describing such a term is unique. A subsequent extraction
of sum or product terms on the new TED creates new vari-
ables corresponding to new subexpressions. By canonicity, each
such variable is unique, with a unique position in the current
TED; therefore, the corresponding expression is also unique.
Hence, at any point of the decomposition, each subexpression
is unique, and the final NFF expression is unique. �

Note that the resulting NFF of the decomposed TED depends
only on the structure of the initial TED, which in turn depends
on the ordering of its variables.

V. DFG GENERATION AND OPTIMIZATION

Once a TED has been decomposed and the corresponding
NFF produced, a structural DFG representation of the expres-
sion is constructed in a straightforward fashion.

Each irreducible TED is first transformed into a simple DFG
using the basic property of the NFF: Each additive edge in the
TED maps into an addition operation, and each multiplicative
edge maps into a multiplication operation in the resulting DFG.
Each node of the DFG has exactly two children, representing
two operands associated with the operation. Operations with
multiple operands are broken into a chain of two-operand oper-
ations or into a logarithmic tree to minimize latency. During the
construction, each node of the DFG is stored in the hash table,
keyed by the corresponding TED function. If, at any point of
the DFG construction, the expression corresponding to a DFG
node is present in the table, it is reused. For example, when
constructing a node for f = a · b · c, a node for subexpression
z = a · b is constructed first, followed by the construction of
f = z · c (the processing of nodes follows the order of variables
in the TED). If a DFG node associated with subexpression
z = a · b has already been constructed, the node for f = z · c
is reused in this operation. This removes potential redundancy
from the DFG that has not been captured by factorization
(caused by potentially poor variable order). Therefore, if a good
variable order has not been found, further DFG optimization
can be achieved directly on the DFG.

All the DFGs are then composed together to form the final
DFG. The DFG obtained from the decomposition of the TED
in Fig. 4(c) is shown in Fig. 6.

It should be noted that, unlike NFF, the DFG representation
is not unique. While the number of operations remains fixed
(dictated by the structure of the TED and its variable order),
a DFG can be further restructured and balanced to minimize
latency. Several methods employed by logic and high-level
synthesis can be used for this purpose [10]. In the simplest
case, a chain of product or sum terms is replaced by logarithmic
trees in each DFGs, and all the component DFGs are composed
together to form the final DFG. Since the construction of DFG
is computationally inexpensive (O(n) for an expression with
n variables), its cost can be evaluated quickly from its NFF.
In addition to the latency and the number of operations of
the unscheduled DFG, such a cost can include the number of
resources, obtained by performing a fast heuristic scheduling.
Alternatively, a number of resources can be provided by the
user as a constraint.

In summary, two basic mechanisms are used to guide
the decomposition to obtain a DFG with the desired prop-
erty: 1) variable ordering, including implicit reordering during
the term extraction and substitution, and 2) DFG restructur-
ing to minimize the expected latency and/or the number of
resources.

VI. REPLACING CONSTANT MULTIPLIERS BY SHIFTERS

Multiplications by constants are common in designs
involving linear systems, particularly in computation-intensive
applications such as DSP. It is well known that multipli-
cations by integers can be implemented efficiently in hard-
ware by converting them into a sequence of shifts and
additions/subtractions. Standard techniques are available to per-
form such a transformation based on canonical signed digit
(CSD) representation [32]. TEDs provide a systematic way to
transform constant multiplications into shifters, while consid-
ering factorization involving shifters. This is done by intro-
ducing a special left shift variable into a TED representation,
while maintaining its canonicity. The modified TED can then
be optimized using the decomposition techniques described
earlier.

First, each integer constant C is represented in CSD format
as C =

∑
i(ki · 2i), where ki ∈ (1̄, 0, 1). By introducing a new

variable L to replace constant 2, constant C can be repre-
sented as:

C =
∑

i

(ki · 2i) =
∑

i

(ki · Li). (9)

The term Li in this expression can be interpreted as a left shift
by i bits.

The next step is to generate the TED with the shift vari-
ables, linearize it, and perform decomposition. Finally, in the
generated DFG, the terms involving the shift variables Lk

are replaced by k-bit shifters. Such a replacement minimizes
hardware cost of the datapath operators.

The example in Fig. 7 shows this procedure for the ex-
pression F0 = 7a + 6b. The original TED for this expression
is shown in Fig. 7(a), with the corresponding DFG shown

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1329

Fig. 7. Replacing constant multiplications by shift and add operations:
(a) Original TED for F0 = 7a + 6b. (b) Initial DFG with constant multipliers.
(c) TED after introducing left shift variable L. (d) Final DFG with shifters,
corresponding to the expression F0 = ((a + b) � 3) − (a + (b � 1)).

in Fig. 7(b). The original polynomial is transformed into an
expression with shift variable L

F = (L3 − 1) · a + (L3 − L1) · b = L3 · (a + b) − L · b − a
(10)

represented by a TED in Fig. 7(c). The TED is then decom-
posed using techniques described earlier. Finally, all constant
multiplications by Lk are replaced by k-bit shifters, resulting in
a DFG in Fig. 7(d). The optimized expression corresponding to
this DFG is

F0 = ((a + b) � 3) − (a + (b � 1)) (11)

where the symbol “� k” refers to a left shift by k bits. This
implementation requires only three adders/subtractors and two
shifters, a considerable gain compared to the two multiplica-
tions and one addition of the original expression.

VII. TDS SYSTEM

The TED decomposition and DFG optimization methods
presented in this paper were implemented as part of an exper-
imental software system, called TDS. The system transforms
the initial functional design specification into a canonical form
(TED) and converts it into a DFG. The generated DFG is opti-
mized for latency and/or resource utilization and used as input

to high-level synthesis. The system is intended for data-flow
and computation-intensive designs used in DSP applications. It
is available online at [5].

The initial design specifications, written in C or behav-
ioral HDL, is translated into a hybrid network composed of
functional blocks (TEDs) and structural elements. TEDs are
obtained from polynomial expressions describing the function-
ality of the arithmetic components of the design. The TEDs are
then transformed into a structural DFG representation through
a series of decomposition steps described in this paper, includ-
ing TED linearization, factorization, extraction, substitution,
and the replacement of constant multipliers by shifters. The
“structural” elements include comparators and other operators
that cannot be expressed analytically for the purpose of TED
construction and, hence, are treated as “black boxes.” The entire
network (global DFG) is further restructured to minimize the
design latency.

The overall TDS system flow is shown in Fig. 8. The left
part of the figure shows traditional high-level synthesis flow.
It is based on the high-level synthesis tool GAUT [33], which
extracts a fixed DFG from the initial specification. The flow
on the right is the TDS system that transforms the extracted
internal data-flow representation into an optimized DFG, which
is then passed back to GAUT for high-level synthesis.

TDS uses a set of interactive commands and optimization
scripts. There are two basic groups of commands: 1) those that
are used for the construction and manipulation of TEDs and
DFGs and 2) those that operate on a hybrid TDS network, with
multiple TEDs and structural elements.

The input to the system can be provided in several ways:
1) by reading a cdfg file (using the read command), produced
by GAUT; 2) by directly typing in the polynomial expression
(the poly command); or 3) by specifying the type and size of
the DSP transform precoded in the system (the tr command).
The optimized DFG is produced by writing a file (the write
command) in a cdfg format compatible with GAUT.

Table I lists some of the TDS commands used in the opti-
mization scripts. Most commands have several options.

VIII. EXPERIMENTAL RESULTS

The TED decomposition described in this paper was imple-
mented as part of a prototype system, which is the TDS. The
design, written in C, is first compiled by GAUT to produce an
initial data-flow netlist in cdfg format, which serves as input
to TDS. TDS transforms this netlist into a set of TEDs and
performs all the TED- and DFG-related optimizations using the
optimization scripts. These scripts include one or more steps
of TED ordering, factorization, CSE, replacement of constant
multipliers by shifters and adders, and DFG restructuring. The
result is written back in the cdfg format and entered into GAUT,
which generates the synthesizable VHDL code for final logic
synthesis.

The results shown in the tables are reported for the fol-
lowing delay parameters, taken form the notech library of
GAUT multiplier delay = 18 ns, adder/sub delay = 8 ns,
shifter delay = 9 ns, and clock period = 10 ns. Note that
multiplication requires two clock cycles.

1330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 8. TDS system flow.

TABLE I
TDS OPTIMIZATION COMMANDS

Table II compares the implementation of a Savitzky–Golay
(SG) filter using the following: 1) the DFG extracted from the
original design by GAUT; 2) the DFG produced by the KBD
system of [24]; and 3) the DFG produced by TDS. The table
reports the following data: The top row, marked DFG, shows
the number of arithmetic operations in an unscheduled DFG
generated by each solution. The operations include adders,

multipliers, shifters, and subtractors. The remaining rows show
the actual number of resources used for a given latency in a
scheduled DFG, synthesized by GAUT. It also shows the actual
implementation area using two synthesis tools: GAUT (which
reports datapath area only) and Synopsys DC Compiler (which
gives area for datapath, steering, and control logic) in their
respective area units. The minimum achievable latency of each
method (measured by the scheduled DFG solution) is shown in
bold font. The results for circuits that cannot be synthesized for
a given latency are marked with “−” (overconstrained).

No CPU time for TED decomposition is given for these ex-
periments as they take only a fraction of a second to complete,
and no such data are available from literature for the KBD
system [24]. Furthermore, we do not report the circuit delay
produced by Synopsys as it is almost identical for all solutions
(equal to the delay of a multiplier).

As shown in Table II, the minimum latency for the DFG
extracted from the original design, without any modification, is
160 ns. The DFG solutions produced by both KBD and TDS
have minimum latency of 120 ns each, a 25% improvement
with respect to the original design. However, the TDS imple-
mentation requires a smaller area than both the original and the
KBD solution, as measured by both synthesis tools. In fact,
all entries in the table show a tight correlation between the
synthesis results of Synopsys DC and GAUT, which allows us
to limit the results of other experiments to those produced by
GAUT only.

Table III presents a similar comparison for designs from
different domains (filters, digital transforms, and computer
graphic applications) synthesized with GAUT. As an example,
examine the Quintic Spline design, for which the KBD solution
had the smallest number of operations in the unscheduled
DFG and the latency of 140 ns. The DFG obtained by TDS

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1331

TABLE II
SG FILTER IMPLEMENTATIONS SYNTHESIZED WITH GAUT AND SYNOPSYS DC

TABLE III
COMPARISON OF MINIMUM ACHIEVABLE LATENCY AND AREA FOR DIFFERENT DESIGNS

1332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

TABLE IV
RESULTS OF DFG PRODUCED BY TDS VERSUS ORIGINAL AND KBD

produced the implementation with 110 ns, i.e., 21.4% faster,
even though it had more operations in the unscheduled DFG.
Furthermore, for the minimum latency of 120 ns, obtained
by KBD, TDS produces an implementation with an area that
is 22% smaller than that of KBD. Similar behavior can be
observed in the remaining designs. In all the cases, the latency
of the scheduled DFGs produced by TDS is smaller, and, with
the exception for the Quartic Spline design, all of them have
also smaller hardware areas for the minimum latency achieved
by KBD. The reason that Quartic design requires larger area
for the reference latency can be attributed to latency-oriented
minimization. Note, however, that the reference latency in this
case is 130 ns, as achieved by KDB, compared with 100 ns
obtained with TDS.

Table IV summarizes the implementation results for these
benchmarks. We can see that the implementations obtained
from TDS have latencies smaller on average by 15.5% and
27.2% with respect to the KBD and original DFGs, respectively.
Moreover, for the reference latency (defined as the minimum
latency obtained by the other two methods), the TDS imple-
mentations have, on average, 7.6% (with respect to KBD) and
36.3% (with respect to the original) smaller area.

IX. CONCLUSION AND FUTURE WORK

The results demonstrate that the TED-based optimization of
polynomial expressions yields DFGs that are better suited for
high-level synthesis than those obtained by direct data-flow
extraction from the initial specification. Specifically, the gener-
ated DFGs have lower latency and/or produce implementations
that require smaller hardware area. This is because each step of
the TED-based decomposition is evaluated in terms of the DFG,
constructed in the background. Such an evaluation is fast; it can
be obtained from an NFF in constant time. It should be noted
that this metric is different than a simple-minded minimization
of the number of arithmetic operators in an unscheduled DFG
(i.e., in the factored algebraic expression), advocated by other
methods.

TDS is intended as a tool for the simplification and fac-
torization of generic data-flow computations, which does not
require any knowledge of the design structure. The fundamental
limitation of the system is that the TED decomposition relies on
variable reordering, which is an expensive operation. This can
be alleviated by performing variable ordering incrementally,
at each step of the decomposition process (on smaller TEDs)
rather than on the original TED.

While, currently, the TDS system works as a front end to an
academic high-level synthesis tool, i.e., GAUT, we believe that
it could also be useful as a precompilation step in a commercial
synthesis environment, such as Catapult C. In this case, the
interface can be provided by translating the optimized DFGs
into C, to be used as input to those tools.

Several open problems need to be addressed in order to
make the TDS system applicable to industrial designs. One
of them is the need to handle finite precision computation.
TED representation, which is inherently based on an infinite
precision model, may produce decompositions that are not
optimal for designs with fixed bit widths, as it may introduce
unacceptable computational errors. One of the possible research
directions is to find decompositions which, under a given bit
width, will minimize the amount of error (e.g., modeled as
noise). This problem is currently under investigation.

REFERENCES

[1] S. Gupta, M. Reshadi, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau,
“Dynamic common sub-expression elimination during scheduling in high-
level synthesis,” in Proc. 15th ISSS, 2002, pp. 261–266.

[2] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Trans. Comput., vol. 55, no. 9, pp. 1188–1201, Sep. 2006.

[3] M. Ciesielski, S. Askar, D. Gomez-Prado, J. Guillot, and E. Boutillon,
“Data-flow transformations using Taylor expansion diagrams,” in Proc.
Des. Autom. Test Eur., 2007, pp. 455–460.

[4] J. Guillot, “Optimization techniques for high level synthesis and pre-
compilation based on Taylor expansion diagrams,” Ph.D. dissertation,
Lab-STICC, Université Bretagne Sud, Lorient, France, Oct. 2008.

[5] TDS—TED-Based Dataflow Decomposition System, Univ. Massachusetts,
Amherst, MA. [Online]. Available: http://www.ecs.umass.edu/ece/labs/
vlsicad/tds.html

[6] V. Chaiyakul, D. Gajski, and R. Ramachandran, “High-level transforma-
tions for minimizing syntactic variances,” in Proc. Des. Autom. Conf.,
1993, pp. 413–418.

[7] M. Potkonjak and J. Rabaey, “Optimizing resource utilization using trans-
formations,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 13, no. 3, pp. 277–292, Mar. 1994.

[8] M. Srivastava and M. Potkonjak, “Optimum and heuristic transformation
techniques for simultaneous optimization of latency and throughtput,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no. 1, pp. 2–
19, Mar. 1995.

[9] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Using global
code motion to improve the quality of results in high level synthesis,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 2,
pp. 302–312, Feb. 2004.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits.
New York: McGraw-Hill, 1994.

[11] J. Ullman, Computational Aspects of VLSI. Rockville, MD: Comput.
Sci., 1983.

[12] K. Wakabayashi, Cyber: High Level Synthesis System From Software into
ASIC. Norwell, MA: Kluwer, 1991, pp. 127–151.

[13] K. Wakabayashi, “Cyberworkbench: Integrated design environment based
on C-based behavior synthesis and verification,” in Proc. DAC, Apr. 2005,
pp. 173–176.

[14] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits. Norwell, MA:
Kluwer, 2004.

[15] High Level Synthesis Tool: Catapult-C, Mentor Graphics, Wilsonville,
OR. [Online]. Available: http://www.mentor.com/products/esl/high_
level_synthesis/catapult_synthesis/

[16] P. Coussy, C. Chavet, P. Bomel, D. Heller, E. Senn, and E. Martin,
High Level Synthesis From Algorithm to Digital Circuits. New York:
Springer-Verlag, 2008.

[17] A. Peymandoust and G. DeMicheli, “Application of symbolic com-
puter algebra in high-level data-flow synthesis,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 22, no. 9, pp. 1154–1165,
Sep. 2003.

[18] Maple, Maplesoft, Waterloo, ON, Canada. [Online]. Available: http://
www.maplesoft.com

CIESIELSKI et al.: OPTIMIZATION OF DATA-FLOW COMPUTATIONS USING CANONICAL TED REPRESENTATION 1333

[19] Mathematica, Wolfram Res., Champaign, IL. [Online]. Available: http://
www.wolfram.com

[20] M. Frigo, “A fast Fourier transform compiler,” in Proc. PLDI, 1999,
pp. 169–180.

[21] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gac̆ić, Y. Voronenko, K. Chen, R. Johnson,
and N. Rizzolo, “SPIRAL: Code generation for DSP transforms,” Proc.
IEEE, vol. 93, no. 2, pp. 232–275, Feb. 2005.

[22] E. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“SIS: A system for sequential circuit synthesis,” ERL, Dept. EECS, Univ.
California, Berkeley, CA, Tech. Rep. UCB/ERL M92/41, 1992.

[23] R. Brayton, K. Rudell, R. Vincentelli, and A. Wang, “Multi-level logic
optimization and the rectangular covering problem,” in Proc. Int. Conf.
Comput.-Aided Des., Nov. 1987, pp. 66–69.

[24] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing polynomial expres-
sions by algebraic factorization and common subexpression elimination,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 10,
pp. 2012–2022, Oct. 2005.

[25] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli, “Parti-
tioned ROBDDs: A compact canonical and efficient representation for
Boolean functions,” in Proc. ICCAD, 1996, pp. 547–554.

[26] R. Bryant and Y. Chen, “Verification of arithmetic functions with binary
moment diagrams,” in Proc. Des. Autom. Conf., 1995, pp. 535–541.

[27] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer
Algorithms. Reading, MA: Addison-Wesley, 1976.

[28] A. Hooshmand, S. Shamshiri, M. Alisafaee, B. Alizadeh, P. Lotfi-Kamran,
M. Naderi, and Z. Navabi, “Binary Taylor diagrams: An efficient imple-
mentation of Taylor expansion diagrams,” in Proc. ISCAS, 2005, vol. 1,
pp. 424–427.

[29] B. Alizadeh, “Word level functional coverage computation,” in Proc.
ASP-DAC, 2006, pp. 7–12.

[30] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon,
“Variable ordering for Taylor expansions diagrams,” in Proc. IEEE Int.
High Level Des. Validation Test Workshop, Nov. 2004, pp. 55–59.

[31] D. Gomez-Prado, “Variable ordering for Taylor expansion diagrams,”
M.S. thesis, Univ. Massachusetts, Amherst, MA, Jan. 2006.

[32] F. J. Taylor, Digital Filter Design Handbook. New York: Marcel Dekker,
1983.

[33] GAUT, Architectural Synthesis Tool, Lab-STICC, Université de Bretagne
Sud, Lorient, France. [Online]. Available: http://www-labsticc.
univ-ubs.fr/www-gaut/

Maciej Ciesielski (SM’95) received the M.S. de-
gree in electrical engineering from Warsaw Poly-
technic, Warsaw, Poland, in 1974 and the Ph.D.
degree in electrical engineering from the University
of Rochester, Rochester, NY, in 1983.

From 1983 to 1986, he was a Senior Research
Engineer with GTE Laboratories on the silicon com-
pilation project. In 1987, he joined the University of
Massachusetts, Amherst, where he is a Professor and
the Associate Department Head of the Department
of Electrical and Computer Engineering. He teaches

and conducts research in the area of electronic design automation, and specifi-
cally, in logic and high-level synthesis, optimization, and verification of digital
systems.

Dr. Ciesielski is the recipient of the Doctorate Honoris Causa from the
Université de Bretagne Sud, Lorient, France, for his contributions to the field
of electronic design automation.

Daniel Gomez-Prado (S’05) received the B.S.E.E.
degree from San Marcos University, Lima, Peru, in
2000 and the M.S. degree in electrical and com-
puter engineering (ECE) from the University of
Massachusetts, Amherst (UMass), in 2006, where he
is currently working toward the Ph.D. degree in the
Department of ECE.

He is currently a Research Assistant with the
Very Large Scale Integration Computer-Aided De-
sign Laboratory, Department of ECE, UMass. His
research interests include high-level synthesis, func-

tional verification, and design space exploration.
Mr. Gomez-Prado has been the recipient of the Fulbright Scholarship, the

Isenberg Scholarship, and the Graduate School fellowship at UMass.

Qian Ren (M’09) received the B.S. degree in bio-
science and biotechnology from Tsinghua Univer-
sity, Beijing, China, in 1997, the M.S. degree in
electrical engineering from Texas A&M University,
College Station, in 2000, and the Ph.D. degree from
the University of Massachusetts (UMass), Amherst,
in 2008.

Between 2003 and 2008, he was a Research As-
sistant with the VLSI CAD Laboratory, Department
of Electrical and Computer Engineering, UMass. His
doctoral work focused on algorithmic-level synthesis

for data-flow and computation-intensive designs. He is currently a Senior
Research and Development Engineer with Synopsys, Inc., Mountain View,
CA, developing optical simulation and correction techniques for future silicon
manufacturing processes.

Jérémie Guillot received the M.S. degree in micro-
electronics and the Ph.D. degree from the Université
de Bretagne Sud, Lorient, France, in 2004 and 2008,
respectively. His Ph.D. focused on the use of Taylor
expansion diagrams for high-level synthesis.

He is currently a Postdoctoral Researcher with
the Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier, France,
where he works on the adaptability of MPSoC
architectures.

Emmanuel Boutillon (M’05) received the Engi-
neering Diploma and the Ph.D. degree from the
Ecole Nationale Supérieure des Télécommunica-
tions (ENST), Paris, France, in 1990 and 1995,
respectively.

In 1991, he was an Assistant Professor with the
Ecole Multinationale Supéieure des Télécommuni-
cations, Dakar, Africa. In 1992, he joined ENST as
a Research Engineer, where he conducted research
in the field of very large scale integration for digital
communications. In 2000, he joined the Laboratoire

des Sciences et Techniques de l’Information, de la Communication et de la
Connaissance, Université de Bretagne Sud, Lorient, France, as a Professor.
His current research interests are on the interactions between algorithms and
architectures in the field of wireless communications and signal processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

